
Online Learning of a Motor Map for Humanoid Robot Reaching

Chris Gaskett and Gordon Cheng

Department of Humanoid Robotics and Computational Neuroscience,
ATR Computational Neuroscience Laboratories, Kyoto, Japan
{cgaskett,gordon}@atr.co.jp, http://www.cns.atr.co.jp/hrcn/

Abstract

We propose a control system for humanoid robot
reaching using a motor-motor mapping that is learnt
online. The system combines endpoint closed-loop and
open-loop visual servo control. The closed-loop compo-
nent moves the eyes, head, arm, and torso, based on
the position of the target and the robot’s hand, as seen
by the robot’s head mounted cameras. The learned,
open-loop component brings the hand into view.

1 Introduction

Reaching is a hand-eye coordination task involving
vision, tracking of moving objects, depth perception;
and dynamic, high-speed movement of the whole body,
including the eyes. Our experimental platform is a hy-
draulically driven full-body humanoid robot with 30
degrees of freedom, anchored at the hips to a support.
The robot is shown in Figure 1. For reaching, we con-
trol 14 joints: 4 eye joints, 3 neck joints, 3 torso joints,
and 4 arm joints; based on the view from both cam-
eras. Our vision system tracks colour blobs [1], and
provides the location of the target object (coloured
pink) and the hand (coloured yellow), in pixels at 60Hz
(see Figure 2).

Our control system for reaching does not rely
on camera calibration or accurate knowledge of the
robot’s kinematics. When the hand is visible the sys-
tem performs accurate endpoint closed-loop control.
It uses uncalibrated stereo vision to compare depths,
but still functions when the target object or hand are
only seen by one eye.

When the hand is completely occluded, the con-
troller can still reach for the target using endpoint
open-loop control. The open-loop system is based on
learned motor-motor relationships [2] between the eye,
head, and arm joints, represented by a Kohonen Self
Organizing Map (SOM) [3].

Figure 1: The robot reaching for the target

2 Hand-Eye Coordination

Continuously updating the position of part of a
robot based on visual information is known as visual
servo control [4]. The mapping relating the position of
the target object, in the pixels coordinate frame of the
cameras, to robot joint positions can be found by using
a camera model and calibration to convert the position
of the target into a fixed coordinate frame, then using
knowledge of the robot’s kinematics to convert the po-
sition into robot joint angles; or through learning. A
system suitable for humanoid robot must account for
the movements of the robot’s eyes and head.

Marjanović et al.’s [5] reaching system for an up-
per body humanoid controlled 2 arm position parame-
ters based on 2 eye/head parameters (pan, tilt). It
used 3 learned mappings: pixels to eye/head mo-
tors (sensor-motor mapping); eye/head motors to arm
motors (motor-motor mapping); and arm motors to
eye/head motors. Each map had 2 input and 2 output
variables. Corrections to the eye/head to arm motor-
motor map were performed without needing to gaze at

1



Figure 2: Superimposed left and right camera views

the hand, but each attempt by the robot to reach the
target only produced one update to the maps. Learn-
ing was slow; however, the robot was able to reach
towards targets in a region of its view.

Rougeaux and Kuniyoshi’s [6] system was based on
the assumption that the eyes will be looking at the
target. It used a motor-motor mapping between 4 eye
and head joint angles and 3 arm parameters. The
mapping was learnt during a training phase in which
the eyes watched the hand. After the training phase,
there was no error correction mechanism.

Metta et al. [2] also developed a controller based on
a single motor-motor mapping. The system mapped
from 2 eye/head parameters to 2 arm control parame-
ters; a later version added eye vergence allowing con-
trol of depth [7]. Instead of using additional mappings
[5], correcting mapping errors required that the robot
redirect its gaze to look at the hand after looking at
the target object.

In the systems described, imperfections in the
learned mapping cause errors in the hand positioning.
Although some of the methods include online error
correction, it is a slow process of learning, rather than
a mechanism for reaching the target position quickly.
The endpoint closed-loop strategy, as opposed to end-
point open-loop control, allows hand positioning accu-
racy independent of the errors in hand-eye calibration
[4]. Endpoint closed-loop control compensates quickly
for imperfections in the mapping by comparing the
view of the hand with the view of the target—the view
of the hand provides performance feedback.

Several systems using fixed cameras have used
learning and endpoint closed-loop control [8–11]. Con-
sequently, they can perform two types of error correc-
tion: slow correction of the learned mappings, and fast
correction of errors in hand positioning through end-

Robot/World

Closed-Loop

Open-Loop

+

Learn?

Joint Angles

View of
Target, Hand

Updated
Joint
Angles

Figure 3: Top level control architecture

point closed-loop control. Although endpoint closed-
loop control seems superior to endpoint open-loop con-
trol, we cannot assume that the hand will be visible
at all times, especially in moving camera systems. For
example, a humanoid robot looking ahead can’t see
that its hands are by its sides.

3 A Hybrid Open and Closed-Loop
Control System

Our system uses a combination of endpoint closed-
loop and open-loop control (Figure 3). The endpoint
closed-loop control system for the arm is unified with
the controller for the eyes, head and torso. The open-
loop control system is used when the eyes can see the
target, but not the hand. A learned, motor-motor
mapping is used to position the hand within view,
so that the closed-loop controller can operate. The
mapping represents joint configurations that place the
hand in the center of the field of view, and is updated
online when the hand passes through the field of view
(indicated as Learn? in Figure 3).

3.1 Closed-Loop Control System

Our closed-loop control system uses only a qual-
itative idea of the relationships between joints and
sensors. It is a non-learning network of proportional
derivative (PD) controllers. Errors caused by poor
modelling are reduced over time through feedback and
redundancy.

The purpose of the control system is to look at the
target with both eyes, move the hand toward the tar-
get, and move the head and torso to assist the eyes

2



EyesView of
Target

View of
Hand Arm

Head

Torso

= assisted by

compare

Figure 4: Assistive relationships in the closed-loop
control system

and hand. The assistive relationships are shown in
Figure 4. At a lower level, we define a network of
assistive relationships for each joint. Each joint’s pur-
pose is to relax to its relaxation position, and also to
assist other joints and blobs seen by the vision system
toward their relaxation positions.

The continual process of relaxation helps to main-
tain a natural pose. When the target is not visible,
relaxation slowly brings the robot back to an upright
posture. When the target is visible, the influence of
relaxation draws the hand to touch the underside of
the target object. Without relaxation, the control sys-
tem drives the hand into the target object and pushes
it along, or occludes the target with the hand.

We define the desired change for self-relaxation, D,
for each joint,

Djoint =
(
θ∗joint − θjoint

)
−Kdθ̇joint, (1)

where Kd the derivative gain for joints; θ is the joint
angle; and the asterisk indicates the relaxation posi-
tion.

The desired change for a vision blob is:

Dblob = (x∗blob − xblob)−Kdvẋblob, (2)

where Kdv is the derivative gain for vision blobs; and
x is position in pixels.

The following describes the control systems for
three example joints, left eye pan, head tilt, and el-
bow:

The purpose of the left eye pan (LEP ) joint is to
move the target into the center of the left camera’s
field of view:

θ̇LEP = Kp ×
[
KrelaxationDLEP

−Ktarget→EP KvCLXtargetDLXtarget

]
, (3)

where L and R represent left and right; X represents
the x pixels axis; Kp is the proportional gain; Kv is the
proportional gain for vision blobs; Cblob is the tracking
confidence for that blob.

The head tilt joint (HT ), which tilts the head from
side to side, moves to equalise the pan (EP ) and tilt
(ET ) of the eyes:

θ̇HT = Kp ×
[
KrelaxationDHT

−KEP→HP (DLEP −DREP )

−KET→HT (DLET −DRET )
]
. (4)

The elbow (LEB) serves to equalise the left-right dis-
parity of the view of the hand with the disparity of
the target:

θ̇LEB = Kp ×
[
KrelaxationDLEB

−KEBKvCLXtarget · CLXhand · (DLXtarget −DLXhand)

−KEBKvCRXtarget·CRXhand·(DRXtarget −DRXhand)
]
,

(5)

where RX is in the opposite direction to LX for sym-
metry.

The control architecture (Figure 3) does not rely on
the use of this particular closed-loop control system;
any control system that fixates on and reaches for the
target is suitable.

3.2 Endpoint Open-Loop Control System

When the hand is not visible, the robot estimates
the required position of the hand using knowledge of
its kinematics. In human terms, it is relying on pro-
prioception.

We assume that the closed-loop control system is
fixating the eyes on the target, then calculate the re-
quired position of the hand through a motor-motor
mapping, without considering the position of the tar-
get in pixels [2, 6]. The mapping represents a con-
straint : joint configurations that place the hand in
the centre of the field of view of both eyes.

Our system learns the mapping while reaching for
the target. During reaching, the target object should
be close to the centre of the field of view, and the hand
should be close to the target object. Consequently, the
hand should be close to the centre of the field of view.
When the hand is visible, the map is trained with a
list of joint angles for the eyes, head, and arm. Torso
angles are not required since the head and the arm are
fixed to the torso. The learning rate is multiplied by a
function of the distance (in pixels) between the hand
and the centre of the field of view, so that learning
emphasises training examples that most closely satisfy
the constraint.

3



Two minutes of movement is enough to train a Ko-
honen Self Organizing Map (SOM) [3] to useful accu-
racy. We use a SOM with a 3D lattice (10 × 8 × 5),
instead of the usual 2D, since the robot’s hand moves
freely in three-dimensional space [8].

The map is used when the hand is lost from view.
Based on the current eye, head, and arm joint angles
the best matching unit (BMU) in the SOM is selected,
based on Euclidean distance:

BMU = arg min
i

(‖x−mi‖) , (6)

where m are the SOM units, and x is the vector of
current joint angles.

The BMU gives a joint configuration in which the
hand is near the centre of the field of view. The arm
joint angles are updated to be closer to the angles spec-
ified by the BMU; the eye and head angles are not
modified. New BMUs are selected continuously, and
the hand moves towards the centre of the field of view.

When searching for the BMU, we include all 11 eye,
head, and arm joint angles, rather than just the 7 eye
and head angles. This addresses the robot’s redundant
joint configurations: the search for the BMU is likely
to find a configuration close to the current arm con-
figuration. However, if the selected unit represents a
posture in which the joint angles of the arm are almost
the same, but the eye and head angles are different,
there is some risk that the arm could become stuck in
that pose. The sticking cannot occur if the arm angles
are not included in BMU selection, but that would not
address redundant arm-joint configurations. To avoid
sticking but address redundancy, we weight the arm
joint components less than the head and eye joints
during BMU lookup:

BMU ′ = arg min
i

(‖x−mi‖w) , (7)

where w is a weighting vector, with 1 for head and
eye joints, and < 1 for arm joints; and ‖x − mi‖w =√

(x−mi)
Tw(x−mi).

Rather than representing an input to output map-
ping, like a perceptron, a SOM has no fixed division
between inputs and outputs. Thus, the learned SOM
can also be used to make the robot look at its hand
by mapping arm angles to eye and head angles.

Is not practical to try to experience or exactly store
all possible joint configurations that place the hand in
front of the eyes. The SOM only approximates and
generalises based on what has been observed. If whole
areas of the joint space have not been covered then the
SOM will not perform sophisticated extrapolation; it
will return the closest configuration it has experienced.

However, there is no need to be exact. The open-loop
controller only needs to be accurate enough to ensure
that it can position the hand within view—in practice,
it can position the hand close to the centre of the field
of view. Ensuring accurate reaching is the role of the
closed-loop controller.

3.3 Combined Closed and Open-Loop
Control

When the hand becomes visible or is lost from view
there is a transition between the endpoint open-loop
and closed-loop controllers. If the transition is per-
formed instantaneously the arm movement is abrupt.

Instead of switching abruptly, we blend from one
controller to another [12]. The proportions are based
on the confidence we have in the sensed information
and the degree of disturbance we expect from mak-
ing transitions. When an object (either the target
or the hand) comes into view the system increases
its measure of confidence for that object over half a
second. During that time, the influence of the open-
loop controller decreases, while the influence of the
closed-loop controller increases. When an object is lost
from view the corresponding closed-loop controller’s
influence is reduced to zero, while the open-loop con-
troller’s increases. The confidence measure (Cblob in
Equations (3) and (5)) is updated independently for
each object, as seen by each camera.

The control system is implemented in Scheme, un-
der the DrScheme environment [13], and generates ac-
tions at 210Hz.

4 Results

The learned motor-motor mapping had sufficient
coverage to be useful after 2 minutes of online learning.
For testing, we attached a sensor for measuring carte-
sian position to the hand. To assess coverage we moved
the hand sequentially to each of the 400 positions rep-
resented by the SOM. Figure 5 shows that the vertical
and horizontal coverage was good, but that there was
little coverage of depth. We also confirmed that the
head eyes look at the hand in each position. The to-
tal range of movement during reaching is higher than
shown because the closed-loop control system moves
the torso and has better depth control than the open-
loop control system.

Hand positions during reaching for a static target
are shown in Figure 6. Before reaching commenced,
the eye(s) were fixated on the target. When both eyes
are used, and the hand is visible, the hand traveled

4



Figure 5: Hand position in joint configurations repre-
sented by the SOM. Positive y is upwards; positive x
is to the right from the robot’s point of view; points
with greater depth (z) are darker and smaller. The
robot’s shoulder is at zero.

74cm to touch the target in 0.8 seconds. When the
hand is covered, so that only the endpoint open-loop
controller can be used, the final positioning error be-
tween the hand and the target was about 20cm.

With one eye covered, as well as the hand, depth
information was lost and the final positioning error
grew to 47cm. The starting position of the hand also
changed because the posture for fixation changes when
one eye is covered. We also evaluated performance
during transitions between target and hand visibility,
in one or both eyes. The system degrades gracefully
in such cases and blends open-loop and closed-loop
control depending on the information available.

5 Discussion

The closed-loop and open-loop controllers are com-
plimentary: The open-loop controller can operate
when the closed-loop control controller cannot; the
closed-loop controller has higher accuracy. Addition-
ally, closed-loop control generates training data for the
open-loop controller without distorting the behaviour
of the robot, e.g. making the robot look at its own
hand instead of the target, or requiring specific be-
haviour from a trainer. Although design and tuning
of the closed-loop controller was not difficult, it would
be an improvement if the closed-loop controller could
be refined online.

Feedback Error Learning also unifies a non-learning
closed-loop controller and a learned open-loop con-

−0.15
−0.1

−0.05
0

0 0.05 0.1 0.15 0.2 0.25 0.3

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

z (m)

x (m)

y 
(m

)

using left eye only,
hand covered 

using both eyes,
hand visible 

using both eyes,
hand covered 

target location

starting
positions

Figure 6: Hand positions during three attempts to
reach a target at position zero. Markers are 20ms
apart.

troller [14]. It learns an inverse model that helps to
compensate for errors during closed-loop control. The
goal of our system is different; the learned mapping
covers as much of the state space as possible so that
the open-loop controller can operate by itself when
closed-loop control is not available.

The Self Organizing Map that represents the open-
loop controller generalises well after observing just a
few minutes of closed-loop reaching behaviour, and
new training data is generated constantly for further
updates. Performance could be improved by reducing
or redefining the inputs to the SOM, instead of using
all of the joint angles. Other learned hand-eye coordi-
nation work has followed this approach, or used robots
with fewer degrees of freedom. Nevertheless, includ-
ing all the joint angles shows which relationships the
learning system is finding between joints and allows re-
dundant positioning solutions to be represented. The
redundant solutions allow the robot to find a solution
near to its current joint configuration, rather than al-
ways choosing the same pose for the same target object
position.

The system’s depth perception during closed-loop
control could be improved through exploiting the
robot’s narrow-field of view cameras, rather than only
the wide-angle cameras [15]. Also, we do not exploit
the size of the target object as a cue. Comparing the
size of the target object to the size of the hand could
be especially useful.

5



Currently, our control system performs reliably as
a component of an visual-tracking system [15]. We
hope to include the reaching system as a component
of other systems in the future.

6 Conclusion

We have implemented a practical control system
for performing reaching using stereo vision on a hu-
manoid robot. We avoided Cartesian coordinates and
trigonometric functions; the only units are pixels, joint
angles, and time. 14 degrees of freedom were used: 4
eye joints, 3 neck joints, 3 torso joints, 4 arm joints.
The system is tolerant of occlusion of either the target
object or its hand from the view of either eye. When
the hand is visible, the system performs high accu-
racy endpoint closed-loop control. Otherwise, it posi-
tions the hand using a learned motor-motor mapping.
The learned mapping can be acquired in a few min-
utes, without requiring a separate training phase. The
combination of open and closed-loop, learned and non-
learned control produces robust and accurate control
without calibration or labour-intensive training proce-
dures.

Acknowledgements

We thank Dr. Aleš Ude for providing us with the
vision system; Mr. Keegan Wade, Mr. Mike Lin, and
Mr. Jeff N. Carter for assisting with experiments; and
the other members of HRCN for their support and
suggestions. This research was supported in part by
the Communications Research Laboratories.

References

[1] A. Ude and C. G. Atkeson, “Probabilistic detection
and tracking at high frame rates using affine warp-
ing,” in Proc. of the 16th International Conference on
Pattern Recognition, ICPR2002, QC, Canada, 2002.

[2] G. Metta, G. Sandini, and J. Konczak, “A develop-
mental approach to visually-guided reaching in artifi-
cial systems,” Neural Networks, vol. 12:pp. 1413–1427,
1999.

[3] T. Kohonen, Self-Organization and Associative Mem-
ory, Springer, Berlin, third edn., 1989, [First edition,
1984].

[4] S. Hutchinson, G. D. Hager, and P. I. Corke, “A
tutorial on visual servo control,” IEEE Transactions
on Robotics and Automation, vol. 12(5):pp. 651–670,
1996.

[5] M. Marjanović, B. Scassellati, and M. Williamson,
“Self-taught visually guided pointing for a humanoid
robot,” in Proc. of the Fourth International Confer-
ence on Simulation of Adaptive Behavior, MA, 1996.

[6] S. Rougeaux and Y. Kuniyoshi, “Robust tracking by
a humanoid vision system,” in Proc. of the First
International Workshop on Humanoid and Human
Friendly Robotics, Tsukuba, Japan, 1998.

[7] G. Metta, F. Panerai, R. Manzotti, and G. Sandini,
“Babybot: an artificial developing robotic agent,” in
Proc. of From Animals to Animats: Sixth Interna-
tional Conference on the Simulation of Adaptive Be-
havior (SAB 2000), Paris, 2000.

[8] H. Ritter, T. Martinetz, and K. Schulten, Neural
Computation and Self-Organizing Maps: An Introduc-
tion, Addison Wesley, 1992.

[9] J. A. Walter and K. J. Schulten, “Implementation of
self-organizing neural networks for visuo-motor con-
trol of an industrial robot,” IEEE Transactions on
Neural Networks, vol. 4(1):pp. 86–95, 1993.

[10] J. R. Cooperstock and E. E. Milios, “Self-supervised
learning for docking and target reaching,” Robotics
and Autonomous Systems, vol. 11(3–4):pp. 243–260,
1993.

[11] M. Blackburn and H. Nguyen, “Learning in robot vi-
sion directed reaching: A comparison of methods,” in
Proc. of the ARPA Image Understanding Workshop,
Moterey, CA, 1994.

[12] G. Cheng, A. Nagakubo, and Y. Kuniyoshi, “Con-
tinuous humanoid interaction: An integrated
perspective— gaining adaptivity, redundance,
flexibility—in one,” Robotics and Autonomous
Systems, vol. 37:pp. 161–183, 2001.

[13] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen,
“DrScheme: A programming environment for
Scheme,” Journal of Functional Programming,
vol. 12(2):pp. 159–182, 2002.

[14] M. Kawato, K. Furawaka, and R. Suzuki, “A hierar-
chical neural network model for the control and learn-
ing of voluntary movements,” Biological Cybernetics,
1987.

[15] A. Ude, C. G. Atkeson, and G. Cheng, “Combining
peripheral and foveal humanoid vision to detect, pur-
sue, recognize and act,” in Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, IROS2003, Las Vegas, USA, 2003.

6


