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Abstract
Underwater robots require adequate guidance
and control to perform useful tasks. Visual
information is important to these tasks and
visual servo control is one method by which
guidance can be obtained. To coordinate and
control thrusters, complex models and control
schemes can be replaced by a connectionist
learning approach. Reinforcement learning uses
a reward signal and much interaction with the
environment to form a policy of correct behav-
ior. By combining vision-based guidance with a
neurocontroller trained by reinforcement learn-
ing our aim is to enable an underwater robot to
hold station on a reef or swim along a pipe.

1 Introduction
At the Australian National University we are develop-
ing technologies for underwater exploration and obser-
vation.  Our objectives are to enable underwater robots
to autonomously search in regular patterns, follow
along fixed natural and artificial features, and swim
after dynamic targets.  These capabilities are essential
to tasks like exploring geologic features, cataloging
reefs, and studying marine creatures, as well as
inspecting pipes and cables, and assisting divers. For
underwater tasks, robots offer advantages in safety,
accuracy, and robustness.

We have designed a guidance and control architec-
ture to enable an underwater robot to perform useful
tasks. The architecture links sensing, particularly
visual, to action for fast, smooth control. It also
allows operators or high-level planners to guide the
robot’s behavior. The architecture is designed to
allow autonomy of at various levels: at the signal
level for thruster control, at the tactical level for com-
petent performance of primitive behaviors and at the
strategic level for complete mission autonomy.

We use visual information, not to build maps to
navigate, but to guide the robot’s motion using visual
servo control. We have implemented techniques for
area-based correlation to track features from frame to
frame and to estimate range by matching between ste-
reo pairs. A mobile robot can track features and use
their motion to guide itself. Simple behaviors regu-
late position and velocity relative to tracked features.

Approaches to motion control for underwater vehi-
cles, range from traditional control to modern control
[1][2] to a variety of neural network-based architec-
tures [3]. Most existing systems control limited
degrees-of-freedom and ignore coupling between
motions. They use dynamic models of the vehicle and
make simplifying assumptions that can limit the oper-
ating regime and/or robustness. The modeling process
is expensive, sensitive, and unsatisfactory.

We have sought an alternative. We are developi
a method by which an autonomous underwater ve
cle (AUV) learns to control its behavior directly from
experience of its actions in the world.  We start wi
no explicit model of the vehicle or of the effect tha
any action may produce.  Our approach is a conn
tionist (artificial neural network) implementation o
model-free reinforcement learning.  The AUV learn
in response to a reward signal, attempting to ma
mize its total reward over time.

By combining vision-based guidance with a neur
controller trained by reinforcement learning our aim
is to enable an underwater robot to hold station on
reef, swim along a pipe, and eventually follow a mo
ing object.
1.1 Kambara Underwater Vehicle
We are developing a underwater robot named Ka
bara, an Australian Aboriginal word for crocodile
Kambara's mechanical structure was designed and 
ricated by the University of Sydney. At the Australia
National University we are equipping Kambara wit
power, electronics, computing and sensing.

Kambara's mechanical structure, shown 
Figure 1, has length, width, and height of 1.2m, 1.5
and 0.9m, respectively and displaced volume 
approximately 110 liters. The open-frame design ri
idly supports five thrusters and two watertigh
enclosures. Kambara’s thrusters are commercia
available electric trolling motors that have been mod
fied with ducts to improve thrust and have custo
power amplifiers designed to provide high current 
the brushed DC motors. The five thrusters enable ro
pitch, yaw, heave, and surge maneuvers. Hen
Kambara is underactuated and not able to perfo
direct sway (lateral) motion; it is non-holonomic.

A real-time computing system including main an
secondary processors, video digitizers, analog sig
digitizers, and communication component is mount
in the upper enclosures. A pan-tilt-zoom came
looks out through the front endcap. Also in the upp
enclosure are proprioceptive sensors including a 

Figure 1: Kambara
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axial accelerometer, triaxial gyro, magnetic heading
compass, and inclinometers. All of these sensors are
wired via analog-to-digital converter to the main
processor.

The lower enclosure, connected to the upper by a
flexible coupling, contains batteries as well as power
distribution and charging circuitry. The batteries are
sealed lead-acid with a total capacity of 1200W. Also
mounted below are depth and leakage sensors.

In addition to the pan-tilt-zoom camera mounted in
the upper enclosure, two cameras are mounted in
independent sealed enclosures attached to the frame.
Images from these cameras are digitized for process-
ing by the vision-based guidance processes.

2 Architecture for Vehicle Guidance
Kambara’s software architecture is designed to allow
autonomy at various levels: at the signal level for adap-
tive thruster control, at the tactical level for competent
performance of primitive behaviors, and at the strate-
gic level for complete mission autonomy.

The software modules are designed as indepen-
dent computational processes that communicate over
an anonymous broadcast protocol, organized as
shown in Figure 2. The Vehicle Manager is the sole
downstream communication module, directing com-
mands to modules running on-board. The Feature
Tracker is comprised of a feature motion tracker and
a feature range estimator as described in section 3. It
uses visual sensing to follow targets in the environ-
ment and uses their relative motion to guide the
Vehicle Neurocontroller. The Vehicle Neurocontrol-
ler, described in 4, learns an appropriate valuation of
states and possible actions so that it can produce con-
trol signals for the thrusters to move the vehicle to its
goal. The Thruster Controller runs closed-loop servo
control over the commanded thruster forces. The
Peripheral Controller drives all other devices on the
vehicle, for example cameras or scientific instru-
ments. The Sensor Sampler collects sensor
information and updates the controllers and the State
Estimator. The State Estimator filters sensor informa-
tion to generate estimates of vehicle position,
orientation and velocities. The Telemetry Router
moves vehicle state and acquired image and science
data off-board.

The Visualization Interface will transform teleme
try into a description of vehicle state that can b
rendered as a three-dimensional view. The Opera
Interface interprets telemetry and presents a nume
cal expression of vehicle state. It provides method 
generating commands to the Vehicle Interface f
direct teleoperation of vehicle motion and for superv
sory control of the on-board modules.

The Swim Planner interprets vehicle telemetry 
analyze performance and adjust behavior acco
ingly, for example adjusting velocity profiles to bette
track a pattern. A Terrain Mapper would transform
data (like visual and range images) into maps that c
be rendered by the Visualization Interface or used 
the Swim Planner to modify behavior. The Missio
Planner sequences course changes to produce c
plex trajectories to autonomously navigate the vehic
to goal locations and carry out complete missions.
2.1 Operational Modes
The software architecture is designed to accommod
a spectrum of operational modes. Teleoperation of 
vehicle with commands fed from the operator direct
to the controllers provides the most explicit control o
vehicle action. While invaluable during developmen
and some operations, this mode is not practical 
long-duration operations. Supervised autonomy, 
which complex commands are sequenced off-boa
and then interpreted over time by the modules o
board, will be our nominal operating mode. Unde
supervised autonomy, the operator’s commands 
infrequent and provide guidance rather than dire
action commands. The operator gives the equivalen
“swim to that feature” and “remain on station”. In fully
autonomous operation, the operator is removed fro
the primary control cycle and planners use state inf
mation to generate infrequent commands for the ve
cle. The planners may guide the vehicle over a lo
traverse, moving from one target to another, or tho
oughly exploring a site with no human intervention

3 Vision-based Guidance of an Underwater 
Vehicle 

Many tasks for which an AUV would be useful o
where autonomous capability would improve effec
tiveness, are currently teleoperated by human ope
tors. These operators rely on visual information 
perform tasks making a strong argument that visu
imagery could be used to guide an underwater vehic

Detailed models of the environment are often n
required. There are some situations in which a thre
dimensional environment model might be useful bu
for many tasks, fast visual tracking of features or ta
gets is necessary and sufficient.

Visual servoing is the use of visual imagery t
control the pose of the robot relative to (a set of) fe
tures.[4] It applies fast feature tracking to provid
closed-loop position control of the robot. We ar
applying visual servoing to the control of an unde
water robot. 
3.1 Area-based Correlation for Feature Tracking
The feature tracking technique that we use as the b
for visual servoing applies area-based correlation to
image transformed by a sign of the difference of Gau
sians (SDOG) operation. A similar feature trackin
technique was used in the visual-servo control of 
autonomous land vehicle to track natural features.[5

Vehicle
Neurocontroller

On-board controlOff-board telemetryOff-board guidance
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Figure 2:  Architecture for vehicle guidance and control
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Input images are subsampled and processed using
a difference of Gaussian (DOG) operator. This opera-
tor offers many of the same stability properties of the
Laplacian operator, but is faster to compute.[6] The
blurred sub-images are then subtracted and binarized
based on sign information. This binary image is then
correlated with an SDOG feature template matching a
small window of a template image either from a pre-
vious frame or from the paired stereo frame. A logical
exclusive OR (XOR) operation is used to correlate
the feature template with the transformed sub-image;
matching pixels give a value of zero, while non-
matching pixels will give a value of one. A lookup
table is then used to compute the Hamming distance
(the number of pixels which differ), the minimum of
which indicates the best match. 
3.2 Tracking Underwater Features
We are verifying our feature tracking method with
actual underwater imagery. Figure 3 shows tracking
three features through 250 images of a support pile. 

The orientation and distance to the pile changes
through this 17 second sequence. Some features are
lost and then reacquired while the scene undergoes
noticeable change in appearance. The changing posi-
tion of the features provides precisely the data needed
to inform the Vehicle Neurocontroller of Kambara’s
position relative to the target.
3.3 Vehicle Guidance from Tracked Features
Guidance of an AUV using our feature tracking
method requires two correlation operations within the
Feature Tracker, as seen in Figure 4. The first, the fea-

ture motion tracker, follows each feature between p
vious and current images from one camera while t
other, the feature range estimator, correlates betw
left and right camera images. The feature motio
tracker correlates stored feature templates to determ
the image location and thus direction to each featu
Range to a feature is determined by correlating fe
tures in both left and right stereo images to find the
pixel disparity. This disparity is then related to an abs
lute range using camera intrinsic and extrinsic para
eters which are determined by calibration.  

The appearance of the features can change dra
cally as the vehicle moves so managing and updat
feature templates is crucial part in reliably trackin
features. We found empirically that updating the fe
ture template at the rate at which the vehicle move
distance equal to the size of the feature is sufficient
handle appearance change without suffering fro
excessive accumulated correlation error.[5]

The direction and distance to each feature are 
the Vehicle Neurocontroller, The neurocontrolle
requires vehicle state, from the State Estimator, alo
with feature positions to determine a set of thrust
commands. To guide the AUV, thruster comman
become a function of the position of visual features.

4 Learned Control of an Underwater Vehicle 
Many approaches to motion control for underwat
vehicles have been proposed, and although work
systems exist, there is still a need to improve their p
formance and to adapt them to new vehicles, tasks, 
environments.  Most existing systems control limite

Figure 3: Every tenth frame (top left across to bottom right) in a sequence of 250 images of an underwater support pile recorded 
at 15Hz. Boxes indicate three features tracked from the first frame through the sequence.
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degrees-of-freedom, for example yaw and surge, and
assume motion along some dimensions can be con-
trolled independently.  These controllers usually
require a dynamic model and simplifying assumptions
that may limit operating regime and robustness.

Traditional methods of control for vehicle systems
proceed from dynamic modelling to the design of a
feedback control law that compensates for deviation
from the desired motion. This is predicated on the
assumption that the system is well-modelled and that
specific desired motions can be determined.

Small, slow-moving underwater vehicles present a
particularly challenging control problem. The dynam-
ics of such vehicles are nonlinear because of inertial,
buoyancy and hydrodynamic effects. Linear approxi-
mations are insufficient, nonlinear control techniques
are needed to obtain high performance.[7]

Nonlinear models of underwater vehicles have
coefficients that must be identified and some remain
unknown because they are unobservable or because
they vary with un-modelled conditions. To date, most
controllers are developed off-line and only with con-
siderable effort and expense are applied to a specific
vehicle with restrictions on its operating regime.[8]
4.1 Neurocontrol of Underwater Vehicles
Control using artificial neural networks, neurocontrol,
[9] offers a promising method of designing a nonlinear
controller with less reliance on developing accurate
dynamic models. Controllers implemented as neural
networks can be more flexible and are suitable for deal-
ing with multi-variable problems. 

A model of system dynamics is not required. An
appropriate controller is developed slowly through
learning. Control of low-level actuators as well as
high-level navigation can potentially be incorporated
in one neurocontroller.

Several different neural network based controlle
for AUVs have been proposed. [10] Sanner and Ak
[11] developed a pitch controller trained by back
propagation. Training of the controller was done of
line in with a fixed system model. Output error at th
single output node was estimated by a critic equ
tion. Ishii, Fujii and Ura [12] developed a headin
controller based on indirect inverse modelling. Th
model was implemented as a recursive neural n
work which was trained offline using data acquire
by experimentation with the vehicle and then furth
training occurred on-line. Yuh [10] proposed sever
neural network based AUV controllers. Error at th
output of the controller is also based on a critic.
4.2 Reinforcement Learning for Control
In creating a control system for an AUV, our aim is fo
the vehicle to be able to achieve and maintain a g
state, for example station keeping or trajectory follow
ing, regardless of the complexities of its own dynami
or the disturbances it experiences. We are developin
method for model-free reinforcement learning. Th
lack of an explicit a priori model reduces reliance o
knowledge of the system to be controlled.

Reinforcement learning addresses the problem
forming a policy of correct behavior through observe
interaction with the environment. [13] The strategy 
to continuously refine an estimate of the utility o
performing specific actions while in specific state
The value of an action is the reward received for ca
rying out that action, plus a discounted sum of th
rewards which are expected if optimal actions are c
ried out the future. The reward follows, often wit
some delay, an action or sequence of actions. Rew
could be based on distance from a target, roll relat
to vertical or any other measure of performance. T
controller learns to choose actions which, over tim
will give the greatest total reward.

Q-learning [14] is an implementation method fo
reinforcement learning in which a mapping is learne
from a state-action pair to its value (Q). The mapping
eventually represents the utility of performing an pa
ticular action from that state. The neurocontrolle
executes the action which has the highest Q value in
the current state. The Q value is updated according to

where Q  is the expected value of performing action u
in state x; R is the reward; α is a learning rate and γ  is
the discount factor. Initially Q(x,u) is strongly influ-
enced by the immediate reward but, over time, it com
to reflect the potential for future reward and the lon
term utility of the action.

Q-learning is normally considered in a discret
sense. High-performance control cannot be ad
quately carried out with coarsely coded inputs a
outputs. Motor commands need to vary smoothly a
accurately in response to continuous changes in st
When states and actions are continuous, the learn
system must generalize between similar states a
actions. To generalize between states, one approac
to use a neural network.[15] An interpolator can pr
vide generalization between actions.[16] Figure
shows the general structure of such a system.

A problem with applying Q-learning to AUV con-
trol is that a single suboptimal thruster action in 
long sequence does not have noticeable effe
Advantage learning [17] is a variation of Q-learning
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Figure 4: Diagram of the AUV visual servoing system
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which addresses this by emphasizing the difference in
value between actions and assigning more reward to
correct actions whose individual effect is small.

Kambara’s neurocontroller [18] is based on advan-
tage learning coupled with an interpolation method
[16] for producing continuous output signals.
4.3 Evolving a Neurocontroller
We have created a simulated non-holonomic, two
degree-of-freedom AUV with thrusters on its left and
right sides, shown in Figure 6. The simulation includes
linear and angular momentum, and frictional effects.
Virtual sensors give the location of targets in body
coordinates as well as linear and angular velocity. 

The simulated AUV is given a goal at 1 units of
distance away in a random direction. For 200 time
steps the controller receives reward based upon its
ability to move to and then maintain position at the
goal. A purely random controller achieves an average
distance of 1.0. A hand-coded controller, which pro-
duces apparently good behavior by moving to the
target and stopping, achieves 0.25 in average dis-
tance to the goal over the training period. 

Every 200 time steps, a new goal is randomly gen-
erated until the controller has experienced 40 goals. A
graph showing the performance of 140 neurocontrol-
lers, trained with advantage learning is shown in the
box-and-whisker plot of Figure 7. All controllers
(100%) learn to reach each goal although some dis-
play occasionally erratic behavior, as seen by the
outlying “+” marks. Half of the controllers perform

within the box regions, and all except outliers li
within the whiskers. This learning method converg
to good performance quickly and with few and sma
magnitude spurious actions.

The next experiments are to add additional degre
of freedom to the simulation so that the controlle
must learn to dive and maintain roll and pitch, and 
repeat the procedure in the water, on-line, with t
real Kambara. Experiments in linking the vision sy
tem to the controller can then commence.

A significant challenge lies in the nature and effe
of live sensor information. We anticipate bias, drif
and non-white noise in our vehicle state estimatio
How this will effect learning we can guess by addin
noise to our virtual sensors but real experiments w
be most revealing. 

5 Commanding Thruster Action
The task of Vehicle Neurocontroller is simplified if its
commanded output is the desired thrust force rath
than motor voltage and current values. The neuroco
troller need not learn to compensate for the non-line
ities of the thruster, its motor and amplifier. Individua
thruster controllers use force as a desired referenc
control average motor voltage and current internally

Considerable effort has been applied in rece
years to developing models of underwater thrus
ers.[19][20][21] This is because thrusters are 
dominant source of nonlinearity in underwater veh
cle motion.[19] Every thruster is different either in
design or, among similar types, due to tolerances a
wear, so parameter identification must be undertak
for each one.

We have measured motor parameters includi
friction coefficients and motor inertia and begun in
tank tests measure propeller efficiency and relatio
ships between average input voltage and curre
motor torque, and output thrust force. Using a thrus
model [21] and these parameters, the neurocontr
lers force commands can be accurately produced
the thrusters.

6 Estimating Vehicle State
In order to guide and control Kambara we need 
know where it was. where it is, and how it is moving

Figure 5: A Q-learning system with continuous states and 
actions as implemented in the neurocontroller.
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This is necessary for long-term guidance of the vehicle
as it navigates between goals and for short-term con-
trol of thruster actions. Continuous state information is
essential to the reinforcement learning method that
Kambara uses to learn to control its actions.

Kambara carries a rate gyro to measure its three
angular velocities and a triaxial accelerometer to mea-
sure its three linear accelerations. A pressure depth
sensor provides absolute vertical position, an incli-
nometer pair provide roll and pitch angles and a
magnetic heading compass measures yaw angle in a
fixed inertial frame. Motor voltages and currents are
also relevant state information. The Feature Tracker
could also provide relative position, orientation and
velocity of observable features.

These sensor signals, as well as input control sig-
nals, are processed by a Kalman filter in the State
Estimator to estimate Kambara’s current state. From
ten sensed values (linear accelerations, angular veloc-
ities, roll, pitch, yaw and depth) the filter estimates
and innovates twelve values: position, orientation and
linear and angular velocities.

The Kalman filter requires models of both the sen-
sors and the vehicle dynamics to produce its estimate.
Absolute sensors are straightforward, producing a
precise measure plus white Gaussian noise. The gyro
models are more complex to account for bias and
drift. A vehicle dynamic model, as described previ-
ously, is complex, non-linear, and inaccurate. All of
our models are linear approximations.

There is an apparent contradiction in applying
model-free learning to develop a vehicle neurocon-
troller and then estimating state with a dynamic
model. Similarly, individual thruster controllers
might be redundant with the vehicle neurocontroller.
We have not fully reconciled this but believe that as
practical matter partitioning sensor filtering and inte-
gration, and thruster control from vehicle control will
facilitate learning. Both filtering and motor servo-
control can be achieved with simple linear approxi-
mations leaving all the non-linearities to be resolved
by the neurocontroller. 

If the neurocontroller is successful in doing this,
we can increase the complexity (and flexibility) by
reducing reliance on modelling. The first step is to
remove the vehicle model from the state estimator,
using it only to integrate and filter data using sensor
models. Direct motor commands (average voltages)
could also be produced by the neurocontroller,
removing the need for the individual thruster control-
lers and the thruster model. Without the assistance of
a model-based state estimator and individual thruster
controllers the neurocontroller will have to learn from
less accurate data and form more complex mappings.

7 Conclusion
Many important underwater tasks are based on visual
information. We are developing robust feature tracking
methods and a vehicle guidance scheme that are based
on visual servo control. We have obtained initial results
in reliably tracking features in underwater imagery and
have adapted a proven architecture for visual servo
control of a mobile robot.

There are many approaches to the problem of
underwater vehicle control, we have chosen to pur-
sue reinforcement learning. Our reinforcement
learning method seeks to overcome some of the limi-

tations of existing AUV controllers and their
development, as well as some of the limitations 
existing reinforcement learning methods. In simul
tion we have shown reliable development of stab
neurocontrollers.
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