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Abstract

Reinforcement learning uses a scalar reward signal and much interaction with the environment to form a poli
correct behavior. We have applied this technique to the problem of developing a controller for an autonomou
underwater vehicle and have achieved reliable off-line development of stable controllers.

Many important underwater tasks rely upon on visual observation of underwater features. We have devised a
ture tracking method and a vehicle guidance scheme that are also based on visual observation of features. W
obtained results in reliably tracking features in underwater imagery, not for map building but to guide an unde
ter vehicle. Using visual servo control techniques, feature position can be used directly to guide motion.

Introduction

At the Australian National University we are developing an autonomous underwater vehicle for tasks in explo
and inspection. Our objectives are to enable submersible robots to autonomously search in regular patterns,
low along fixed natural and artificial features, and ultimately, to swim after dynamic targets. These capabilitie
essential to tasks like cataloging reefs, exploring geologic features, and studying marine creatures, as well a
inspecting pipes and cables, and assisting divers.

There are many approaches to the problem of motion control for underwater vehicles, ranging from traditiona
trol to modern control [1][2] to a variety of neural network-based architectures [3].  Most existing systems con
limited degrees-of-freedom, for example yaw and surge, and assume motion along other dimensions can be 
trolled independently.  The implementation of these controllers usually requires a dynamic model of the vehic
a number of simplifying assumptions which may limit its operating regime and/or robustness.  The modeling 
cess is expensive, sensitive, and unsatisfactory.

We have sought an alternative.  We are developing a method by which an autonomous underwater vehicle (
learns to control its behavior directly from experience of its actions in the world.  We start with no explicit mod
the vehicle or of the effect that any action may produce.  Our approach is a connectionist (artificial neural net
implementation of model-free reinforcement learning.  The AUV learns in response to a reward signal, attemp
maximize its total reward over time.  Our approach differs from supervisory learning approaches which requir
the “correct” control be known (from pre-existing models) so that it can be used to train the neural network.  
Another consideration that we address is that unlike most learning systems, which consider discrete states, c
an AUV requires evaluation of continuous input signals and, for smooth control, requires continuous output s

Controlling its own motion is part of the AUV's challenge, another is determining where to go. We are develo
the use of visual information, not to build maps to navigate, but for visual servo control.[4] We have implemen
techniques for area-based correlation to track feature from frame to frame and estimate range by matching b
stereo pairs. A mobile robot can track features and use their motion to guide itself. Simple behaviors regulate
tion and velocity relative to tracked features in order to provide control inputs and immediate reinforcement to
learning system. In this manner we intend our AUV to hold station on a reef, swim along a pipe, or perform a
able search of the sea floor.

Underwater Vehicle Control

Various approaches to the problem of motion control for underwater vehicle have been proposed, and althou
many working systems exist, there is still a need to improve their performance and to adapt them to new veh
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tasks, and environments.  Most existing systems control limited degrees-of-freedom, for example yaw and su
and assume motion along dimensions can be controlled independently.  The implementation of these control
ally requires a dynamic model of the vehicle and a number of simplifying assumptions which may limit their 
operating regime and/or robustness. Movement between two points is typically considered a navigation prob
separate from the control problem.

Traditional methods of control for vehicle systems proceed from dynamic modelling to the design of a feedba
control law that produces control inputs to compensate for deviation from the desired motion. This is predicat
the assumption that the system can be well-modelled and that specific desired motions can be determined.

Non-traditional, specifically connectionist (artificial neural network), approaches to motion control, can avoid 
of the modelling difficulty. Instead, networks are constructed without any model of system dynamics. An appr
ate controller is developed through training; appropriate actions to move the vehicle along the desired path s
emerge. Control of low-level actuators as well as high-level navigation can potentially be incorporated in one
neurocontroller.

Control of AUVs

Small, slow-moving underwater vehicles present a particularly challenging control problem. The dynamics of
vehicles are nonlinear because of inertial, buoyancy and hydrodynamic effects. Linear approximations are in
cient and nonlinear modelling and control techniques are needed to obtain high performance.[5]

Nonlinear models of underwater vehicles have many coefficients that must be identified. Some model param
remain unknown either because they are unobservable or because they vary with un-modelled conditions. To
most controllers are developed off-line and only with considerable effort and expense are applied to a specifi
cle with restrictions on its operating regime.[6]

Considerable effort has been made in recent years to developing accurate models of thrusters.[7][8][9] This i
because thrusters are a dominant source of nonlinearity in vehicle motion.[7] Every thruster is different either
design or, among similar types, due to tolerances and wear, so parameter identification must be undertaken 
one. With thrusters precisely modeled, the task of coordinating all the thrusters is built upon the dynamic mod
the whole system which takes to form:  where M is the inertia matrix includ
ing added mass, C is the matrix of Coriolis and centripetal terms, D is the hydrodynamic damping and lift ma
is the vector of restoring forces and moments, and τ is the vector of control inputs; x is the vector of positions and 
orientations and v is the vector of linear and angular velocities.[5]

Yoerger and Slotine proposed a series of single-input/single-output continuous-time controllers by using slidi
mode techniques and demonstrated the robustness of these systems in the presence of uncertainties.[1] Slid
techniques enable stable control of the system over a wide operating regime, as required for an AUV. Anothe
advantage is that adaptation can be incorporated to modify the control law as it reaches the limits of its opera
regime. Cristi proposed an adaptive sliding mode controller based on a primary linear model and bounds on 
ear disturbances.[2] Refinements to sliding mode controllers continue to produce one or two-dimensional 
controllers.[10][11][12] General, full degree-of-freedom solutions to control of freely moving underwater vehic
remain elusive. 

Neurocontrol of AUVs

Control using artificial neural networks, neurocontrol, [13] offers a promising method of designing a nonlinear
troller with less reliance on developing accurate dynamic models. Controllers implemented as neural network
be more flexible and are suitable for dealing with multi-variable problems. 

Several different neural network based controllers for AUVs have been proposed. [14] Sanner and Akin [15] 
oped a pitch controller trained by back-propagation. Training of the controller was done off-line in with a fixed
system model. Output error at the single output node was estimated by a critic equation based on the pitch e
Ishii, Fujii and Ura [16] developed a heading controller based on indirect inverse modelling. The model was im
mented as a recursive neural network which was trained offline using data acquired by experimentation with 
vehicle and then further training occurred on-line. Error at the output of the controller was estimated by propa
through the model to the single output node which drove the steering thrusters differentially. Yuh [14] has pro
several neural network based AUV controllers. Error at the output of the controller was based on a critic equa
which uses an estimate of the upper bounds of the vehicle inertia matrix to assign error to individual outputs.

M v̇( ) C v( )v D v( )v g x( )+ + + τ=
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controller learned in simulation. Venugopal [17] used a similar arrangement to Yuh except that a gain matrix 
inserted between the controller and the system model. It reduced the reliance on known parameters of the ve
made assumptions about the interactions between various directions of motion.

The resulting performance of these controllers is promising. The ability to learn or at least refine the controlle
line in real time has been demonstrated [16], as has the ability to cope with changing system parameters [18
controllers all use a system model, whether it is fixed, learned or refined. It is possible to develop a neurocon
in which the system model is not required at any stage. In situations where the required controller is less com
than the system model, this type of model-free approach may be the most appropriate. 

Reinforcement Learning for Vehicle Control

In creating a control system for an AUV, our aim is for the vehicle to be able to achieve and maintain a goal s
for example station keeping or trajectory following, regardless of the complexities of its own dynamics or the 
bances it experiences. We are developing a method for model-free reinforcement learning with multiple conti
states and multiple continuous actions. The lack of an explicit a priori model makes the system adaptable an
reduces reliance on knowledge of the system to be controlled. The system identifies both the structure and p
terization of an effective controller at once.

Reinforcement Learning

Reinforcement learning addresses the problem of forming a policy of correct behavior through observed interaction
with the environment. [20] The general strategy is to use statistical techniques and dynamic programming me
to continuously refine an estimate of the utility of performing a specific action while in a specific state. The value of 
an action is the reward received for carrying out that action, plus a discounted sum of the rewards which are 
expected if optimal actions are carried out from all future states.

A distinguishing characteristic of reinforcement learning is that a single scalar reward is received for each ac
taken. The reward comes from a critic which evaluates ongoing progress (unlike supervised learning where t
rect output is required at each step to train the network). 

In the case of an AUV, an extended sequence of thruster commands is required to reach a goal. At any insta
difficult to determine whether individual thrusters are behaving correctly. Only after a period of time can their 
lective performance be evaluated. The reward follows, often with some delay, an action or sequence of actio
Reward could be based on distance from a target, roll relative to vertical or any other measure of performanc
controller learns to choose actions which, over time, will give the greatest total reward.

The delay before reward leads to the temporal credit assignment problem, identifying which parts of a composite 
action caused the reward is the structural credit assignment problem. The scalar reward value on its own does n
give enough information to determine what part of a composite action was beneficial, or what part of the state
mation was important for determining the choice of this action. Thus reinforcement learning systems require 
for exploration of the state and action spaces.

Q-learning[21] is an implementation method for reinforcement learning in which a mapping is learned from a 
action pair to a value called Q. The mapping eventually represents the utility (in the long run) of performing an p
ticular action from that state. The neurocontroller then measures the state, chooses the action which has the
Q value and executes it. The Q function is updated according to the equation:  

where Q  is the expected value of performing action u in state x; x is the state vector; u is the action vector; R is the 
reward; α is a learning rate and γ  is the discount factor. Initially Q(x,u) is strongly influenced of the immediate 
reward, R, of performing an action u given state x but, over time, it comes to reflect the long-term utility of the 
action.

Continuous States and Actions

Many real world control problems require actions of a continuous nature, in response to continuous state me
ments. But most learning systems, indeed most classical AI techniques, are designed to operate in discrete (
symbolic) domains. High-performance control of mobile robots cannot be adequately carried out with coarsel
coded inputs and outputs. Motor commands need to vary smoothly and accurately in response to continuous
in state.

Q x u,( ) 1 α–( )Q x u,( ) α R γmaxuQ xt 1+ ut 1+( , ) ]+[+=
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Systems in which state and action are discretized scale poorly, as the number of state and action variables in
the size of table required grows exponentially. Accurate control requires that variables be quantized finely, bu
these systems may fail to generalize between similar states and actions they require large quantities of traini
Using a coarser representation of states leads to a state aliasing problem in which different world states appe
the same. It is possible to avoid these discretization problems entirely by using learning methods which can d
with continuous states and actions.

Continuous State and Action Q-learning

Q-learning (and many other reinforcement learning algo-
rithms) are normally considered in a discrete sense. This 
allows implementation in a simple lookup table. When 
states and actions are continuous, it is necessary to gener-
alize between similar states and actions. To generalize 
between states, one approach is to use a neural net-
work.[22] An interpolator can provide generalization 
between actions. [23] Partial derivatives of the interpola-
tor can be used to back-propagate the error in the Q-value 
as an error signal to the neural network. Figure 1 shows 
the general structure of such a system.

A problem with using Q-learning when applied as in 
AUV control is that at any brief instant the action being undertaken does not have a large contribution to the 
ment of the vehicle. One suboptimal thruster action in a long sequence does not have noticeable effect. Adva
learning addresses this by emphasizing the relative advantage of each action.

Advantage Learning

Advantage learning [24] is an enhancement to Q-learning which emphasizes the differences in value between 
actions. In cases where an action does not lead to a catastrophic event, the value of an action can vary only 
from other actions. This leads to a situation in which the Q-value varies widely between states, but only slightly 
between actions. The problem is compounded as the time intervals between control actions get smaller. As tQ-
value is only approximated for continuous states and actions it is likely that most of the approximation power 
used representing the values of the states rather than actions in states. The relative values of actions will be 
represented, resulting in a poor policy. In advantage learning the value of the optimal action is the same as fo Q-
learning, but the lesser value of non-optimal actions is emphasized by a scaling factor. This makes a more e
use of the approximation resources available.

By applying the technique of advantage learning with continuous states and actions we can evolve an neuroc
ler that can move the AUV from place to place, so now we need a method of generating guidance about whe

Visual-servoing for Underwater Vehicle Guidance

Many tasks for which an AUV would be useful or where autonomous capability would improve effectiveness,
currently teleoperated by human operators. These operators rely on visual information to perform tasks, so e
dently visual imagery can form the basis for guiding underwater vehicles. [25] Other sensing modalities, such
acoustics, are certainly useful, but most of what needs to be done is done visually.

Detailed models of the environment often do not need to be derived from the visual imagery. There are some
tions in which a three-dimensional environment model might be useful but, for many tasks, fast visual trackin
features or targets is necessary and sufficient.

Visual servoing is the use of visual imagery to control the pose of the robot relative to (a set of) features.[4] It
applies fast feature tracking to provide closed-loop position control of the robot. We are applying visual servo
the control of an underwater vehicle. 

Area-based Correlation for Feature Tracking and Range Estimation

The feature tracking and range estimation technique we use as the basis of visual servoing applies area-bas
lation to an image transformed by a sign of the difference of Gaussians (SDOG) operation. An overview of th

Q

RNeural

Network

u

x

Interp-

olator

u
0

,y
0

u
1

,y
1

k
,y

k

u ,y
n n

u

Figure 1: A Q-learning system with continuous states 
and actions.

Neural
network

Inter-
polator



 

utono-

t 
the tem-
g errors 
re of 

 dis-
ve 
t, 
method appears in Figure 2. A similar feature tracking technique was used in the visual-servo control of an a
mous land vehicle to track natural features. [26]

This correlation method exploits the invariance of the sign 
of the zero crossing in the Laplacian of the Gaussian of an 
image. Even in the presence of noise and image intensity 
shifts, this sign information is stable. [27] Binary correla-
tion offers more efficient implementation over other 
schemes, such as sum-of-squared differences and fre-
quency domain matching, since it uses logical rather than 
arithmetic operations to match the binary sign informa-
tion, and operates on several pixels at once. 

Input images are subsampled, then processed using a dif-
ference of Gaussian (DOG) operator. This operator offers 
many of the same stability properties of the Laplacian 
operator, but is faster to compute. By selecting different 
Gaussian sizes, the filter can be adjusted to the input 
images. The blurred sub-images are then subtracted and 
binarized based on sign information. This binary image is 
then correlated with an SDOG feature template matching 
a small window of a template image either from a previ-
ous frame or from the paired stereo frame. A logical 
exclusive OR (XOR) operation is used to correlate the 
feature template with the transformed sub-image; match-
ing pixels give a value of zero, while non-matching pixels 
will give a value of one. A lookup table is then used to 
compute the Hamming distance (i.e. the number of pixels 
which differ), the minimum of which indicates where the 
best match occurred. In the simplest case, the minimum of 
the correlation matrix indicates the best match. When the 
minimum is not dominant other statistical methods are 
needed to identify the location of the best match.

Each feature, and specifically its transformed template, 
must exhibit sufficient texture to be distinctive from its 
surroundings. We have found that even without artifi-
cially structured targets, natural environments contain 
sufficient features of an appropriate scale. Currently fea-
tures are chosen manually but interest operators and 
selection techniques [28] will soon eliminate this 
requirement.

The appearance of the features can change drastically as 
the vehicle moves and the greatest change in appearance 
typically occurs when the vehicle nears the target, within two or three meters for the size of feature we use. A
longer distances, the image to image change in appearance, and pixel correlation, is slight. Simply updating 
plate every correlation cycle would seem to solve this aspect change problem, but small (single pixel) trackin
integrate each time the template is updated. In the worst case, this causes the correlator to slide off the featu
interest. By using the same template for several correlation cycles, the effect of accumulated error can be 
reduced.We have found empirically that updating the template at the frequency at which the vehicle moves a
tance equal to the size of the target is sufficient to handle appearance change without suffering from excessi
accumulated correlation error.[26] When trying to maintain constant position with respect to a feature it is bes
however, to maintain a fixed set of feature templates.

Extracted Region 
of Interest

Narrow Blur Wide Blur

SDOG

H

Figure 2: Diagram of the correlation method which performs a 
sign of the difference of Gaussians (SDOG) transform on a por-
tion of the image and then computes the Hamming distance with 
stored feature templates to produce a correlation matrix.
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Vehicle Guidance from Tracked Features

We apply this correlation method to guide an AUV with two correlation processes. One, the Feature Motion T
follows each target between previous and current images from one camera while the other, the Feature Rang
mator correlates between left and right stereo images to find pixel disparity and from that estimate range. 

Figure 3 shows an overview of the visual servoing system. Input imagery comes from a stereo pair of camera
mounted on the AUV. The motion of features in the input images and their range from the camera can theref
determined relative to the AUV. The Feature Motion Correlator uses stored feature templates to determine th
tion to each feature. Feature optical flow can also be determined. Range to a feature is determined by the Fe
Range Estimate by correlating features in both left and right stereo images to find their pixel disparity. This d
ity is then related to an absolute range based on camera intrinsic and extrinsic parameters which have been 
determined by calibration. The direction and distance to each feature are then fed the Vehicle Neurocontrolle
neurocontroller requires vehicle state, from the State Estimator, along with feature positions to determine an 
a set of thruster commands.

To guide the AUV, thruster commands become a function of the position of visual features—differential chan
feature position are related to differential changes in the AUV motion.

Application to an Experimental System

Kambara Underwater Vehicle

Our underwater vehicle is named Kambara, an Australian 
Aboriginal word for crocodile. Kambara's mechanical 
structure was designed and fabricated by the University of 
Sydney. It is a simple, low-cost underwater vehicle suit-
able as a test-bed for research in underwater robot 
autonomy. At the Australian National University we have 
undertaken the task of equipping Kambara with power, 
electronics, computing and sensing.

Kambara's mechanical structure, shown in Figure 4, is an 
open frame which rigidly supports five thrusters and two 
watertight enclosures. The frame has length, width, and 
height of 1.2m, 1.5m, and 0.9m, respectively and dis-
placed volume of approximately 110 liters.

Feature Range
Estimator

Vehicle 
Neurocontroller

Thruster
Controller

Feature Motion
Correlator

Direction
to Feature

Left Image

Right Image

Feature Templates

Range
to Feature

Stereo Cameras

Grab
Image

Update
Template

Vehicle
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Position 

State
Estimator

& Velocity

Thruster 
Forces

Figure 3: Diagram of the AUV visual servoing system

Figure 4: Kambara
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Kambara's five thrusters enable roll, pitch, yaw, heave, and surge maneuvers. Hence, is underactuated and 
to perform direct sway (lateral) motion; it is non-holonomic.

Mounted in the upper enclosure is a real-time computing system including main and secondary processors, v
digitizers, analog signal digitizers, and communication components. A pan-tilt-zoom camera looks out throug
front endcap. Also in the upper enclosure are proprioceptive sensors including a triaxial accelerometer, triaxi
magnetic heading compass, and inclinometers. All of these sensors are wired via analog-to-digital converter 
main processor. These sensor signals, as well as control signals, are processed by an extended Kalman filte
State Estimator of Figure 3) to produce a continuous estimate of Kambara’s state.

The lower enclosure, connected to the upper by a flexible coupling, contains batteries as well as power distri
and charging circuitry. The batteries are 12V, sealed lead-acid with a total capacity of 1200W. Also mounted
below are depth, temperature and leakage sensors.

In addition to the pan-tilt-zoom camera mounted in the upper enclosure, two cameras are mounted in indepe
sealed enclosures attached to the frame. Images from these cameras are digitized and mapped into the main
sor’s memory for processing by the feature motion and range estimation processes.

Evolving a Neurocontroller

Kambara’s neurocontroller is based on the advantage learning algorithm [24] coupled an interpolation metho
for producing continuous control signals. No explicit model of the vehicle is given a priori. The controller gene
continuous outputs based on continuous state information. In [29] we describe the algorithms in detail.

We have created a simulated non-holonomic, two degree-of-freedom AUV with thrusters on its left and right 
The simulation includes linear and angular momentum, and frictional effects. Virtual sensors give the location
targets in body coordinates as well as linear and angular velocity, all with absolute certainly. An image of the
lator during offline learning is shown in Figure 5.

In earlier results using Q-learning alone [29], simulated AUVs reach their first (randomly positioned) goal locatio
(within small bounds) about 70% of the time. The AUVs initially take a circuitous route, moving off in the wron
direction and spiralling around. Somewhat less than half of the controllers could reach all in series of 10 targe

Figure 5: Appearance of the Kambara simulator while learning to control motion and navi-
gate from position to position. The path between goals becomes increasingly direct.
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of the difficulty is obtaining successful controllers is in designing the reward function. There is little establishe
ory on this. We have empirically settled on the negative of the distance to the target (.i.e the reward for being
goal is zero). There are some algorithmic advantages in having non-positive reward values.

We now report that 100% of neurocontrollers converge to acceptable performance. The experimental method
the simulated AUV is given a goal at 2 units of distance away in a random direction. For 200 time steps the c
ler receives reward based upon its ability to move to and then maintain position at the goal. A purely random
controller achieves an average distance of 1.0. A hand-coded controller, which produces apparently good be
by moving to the target and stopping, achieves 0.25 in average distance to the goal over the training period. 
testing method ensures that controllers which guide the AUV to the goal but do not maintain their position do
receive a high rating. 

Every 200 time steps, a new goal is randomly generated until the controller has experienced 40 goals. Graph
paring 140 controllers trained with Q-learning and 140 trained with advantage learning are shown in the box-an
whisker plots in Figure 6. Again, all controllers learn to reach each goal although some display occasionally e
behavior, as seen by the outlying “+” marks. Half of the controllers perform within the box regions, and all exc
outliers lie within the whiskers. Advantage learning converges to good performance more quickly that Q-learning 
and with many fewer and smaller magnitude spurious actions. Gradual improvement is still taking place at th
target. 

The next obvious experiments, which are currently underway, are to add additional degrees of freedom to the
lation so that the controller must learn to dive and maintain roll and pitch, and to repeat the procedure in the 
on-line, with the real Kambara. A significant challenge lies in the nature and effect of live sensor information.
anticipate drift, systematic error, in our vehicle state estimation. How this will effect learning we can guess by
ing noise to our virtual sensors but real experiments will be most revealing. 

Tracking a set of Underwater Targets

We have begun work verifying our feature tracking method with actual underwater imagery. In Figure 7, in im
of an underwater pile, we provide an example of tracking three features through 250 frames. Note the chang
entation and distance to the pile through this 17 second sequence and that the imagery is low contrast and s
Some features are occasionally lost and then reacquired while the scene undergoes noticeable change in ap
The changing position of the features provides precisely the data needed to inform the neurocontroller of Kam
position relative to the target. It is not difficult to imagine Kambara using this visual information to hold station
this pile or to dive and complete an inspection task.
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Figure 6: Performance of 140 neurocontrollers trained using Q-learning (left) and advantage learning (right). Box and whisker plots 
with lines following median performance when attempting to maintain zero distance from each target.
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Conclusion

There are many approaches to the problem of underwater vehicle control, we have chosen to pursue reinforc
learning. Our reinforcement learning method seeks to overcome some of the limitations of existing AUV cont
and their development, as well as some of the limitations of existing reinforcement learning methods. In simu
we have shown reliable development of stable controllers.

Many important underwater tasks are based on visual information. We are developing robust feature tracking
ods and a vehicle guidance scheme that are also based on visual information. This seems to be an appropria
make underwater vehicles autonomous. We have obtained initial results in reliably tracking features in under
imagery and have adapted a proven architecture for visual servo control of a mobile robot.
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